If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12k^2+13k+1=0
a = 12; b = 13; c = +1;
Δ = b2-4ac
Δ = 132-4·12·1
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-11}{2*12}=\frac{-24}{24} =-1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+11}{2*12}=\frac{-2}{24} =-1/12 $
| 4m-1=6 | | -3y=4y-4/5 | | -5+5(n-7)=-40+5n | | 30=2j-10 | | |3+6n|=|4n+11| | | -1v=3-2v | | -3(x-8)+x=2x-12 | | 6k-3=-54 | | 2(x-4)+21=-5 | | -4(10-12b)=164 | | 3x^2/3^3x=1/9 | | 14x+3+4×+10=157 | | (-15x-10)=(-5x+25) | | -10b-10=8-4b | | -5.f=36.4 | | H(t)=54t-12t | | -2/5p+2=-1/5p+11 | | 22(g+1)=2g+8 | | x^2-2x+8=x^2+8x-52 | | 1/3(2x-9)=-18 | | Y=(32-2x)(24-2x)(x)= | | 3+2/3x=5/6+7/8 | | 9n^2+50n-24=0 | | 81/9(7+2)=x | | -7(7x-6)=385 | | -5.f=36 | | 15x-6+6x=9x+2 | | (2/11)-4x=4x=(9/11) | | 25=7m+4= | | 6x+30=31 | | 2(x-2)=-x-10 | | 15m+4-49m=-32 |